Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. J. Pharm. Sci. (Online) ; 58: e19245, 2022. graf
Article in English | LILACS | ID: biblio-1374573

ABSTRACT

Abstract Doxorubicin (DOX) induced myocardial toxicity may limit its therapeutic use in clinic. Psoralen (PSO), a major active tricyclic furocoumarin extracted from Psoralea corylifolia, is widely used as an antineoplastic agent in treatment of leukemia and other cancers. This study is aim to find the protective effect of psoralen polymer lipid nanoparticles (PSO-PLN) on doxorubicin-induced myocardial toxicity in mice. The model of myocardial toxicity induced by DOX was established. The experiment was divided into 6 groups: normal saline group, DOX + Sulfotanshinone Sodium, DOX + PSO-PLN (3 mg/kg), DOX + PSO-PLN (6 mg/kg), DOX + PSO-PLN (9 mg/ kg), DOX group. DOX alone treated mice lead to a significant decrease in the body weight, heart weight, and increase in the serum levels of lactate dehydrogenase (LDH), creatine kinase (CK) and malondialdehyde (MDA) markers of cardiotoxicity. However, DOX reduced glutathione (GSH) content and activities of antioxidant enzymes, including superoxide dismutase (SOD) and glutathione peroxidase (GPX), were recovered by PSO-PLN. And PSO-PLN also decreased markers of cardiotoxicity in the serum. Western blotting data showed that the protective effects of PSO-PLN might be mediated via regulation of protein kinase A (PKA) and p38. Our study suggest that PSO-PLN possesses antioxidant activities, inactivating PKA and p38 effect, which in turn protect the heart from the DOX-induced cardiotoxicity.


Subject(s)
Animals , Female , Mice , Doxorubicin/adverse effects , Nanoparticles/classification , Ficusin/analysis , Blotting, Western/instrumentation , Cardiotoxicity/complications , Antioxidants/adverse effects
2.
Biomolecules & Therapeutics ; : 84-88, 2013.
Article in English | WPRIM | ID: wpr-19392

ABSTRACT

High risk of cardiovascular diseases caused by existing PPAR-gamma agonists such as rosiglitazone and pioglitazone has been recently reported. CKD-501 is a novel selective PPAR-gamma agonist as a potential target to reduce cardiovascular risk in non-insulin dependent diabetes mellitus (NIDDM). In this study, We investigated potential cardiotoxicity of CKD-501 and compared its toxicity with that of rosiglitazone or pioglitazone using db/db mice. After 12-week repeated administration of CKD-501 at doses of 3, 10 and 30 mg/kg/day or rosiglitazone at doses of 10 and 30 mg/kg/day or pioglitazone at doses of 200 and 540 mg/kg/day, animals were sacrificed for investigation of potential toxicities. Diameters of left ventricles and areas of cardiomyocytes were measured. And lipid accumulation and apoptosis in heart muscle were examined by oil red O staining and TUNEL staining, respectively. Diameters of left ventricles were significantly increased in high dose treatment group of pioglitazone compared to control (p CKD-501 > or = rosiglitazone. However, lipid accumulation and apoptotic changes in heart were not observed in all dosing groups. Taken together, the myocardial cell hypertrophy of CKD-501 are relatively lower than that of pioglitazone and similar to rosiglitazone. And it is suggested that the myocardial cell hypertrophy of CKD-501 are less adverse in clinical use for the management of the NIDDM.


Subject(s)
Animals , Mice , Apoptosis , Cardiovascular Diseases , Diabetes Mellitus , Diabetes Mellitus, Type 2 , Heart Ventricles , Heart , Hypertrophy , In Situ Nick-End Labeling , Myocardium , Myocytes, Cardiac
SELECTION OF CITATIONS
SEARCH DETAIL